

STM8L001J3

8-bit ultra-low-power microcontroller with up to 8-Kbyte Flash memory, multifunction timers, comparators, UART, SPI, I2C

Datasheet - production data

Features

- Main microcontroller features
 - Supply voltage range 1.8 V to 3.6 V
 - Low power consumption (Halt: 0.3 μA, Active-halt: 0.8 μA, Dynamic Run: 150 μA/MHz)
 - STM8 Core with up to 16 CISC MIPS throughput
 - Temp. range: -40 to 125 °C
- Memories
 - 8 Kbytes of Flash program including up to 2 Kbytes of data EEPROM
 - Error correction code (ECC)
 - Flexible write and read protection modes
 - In-application and in-circuit programming
 - Data EEPROM capability
 - 1.5 Kbytes of static RAM
- Clock management
 - Internal 16 MHz RC with fast wakeup time (typ. 4 μs)
 - Internal low consumption 38 kHz RC driving both the IWDG and the AWU
- Reset and supply management
 - Ultra-low power POR/PDR
 - Three low-power modes: Wait, Active-halt, Halt
- Interrupt management
 - Nested interrupt controller with software priority control
 - Up to 6 external interrupt sources
- I/Os
 - Up to 6 I/Os, all mappable on external interrupt vectors
 - I/Os with programmable input pull-ups, high sink/source capability and one LED driver infrared output

- Peripherals
 - Two 16-bit general purpose timers (TIM2 and TIM3) with up and down counter and 1 channel (used as IC, OC, PWM)
 - One 8-bit timer (TIM4) with 7-bit prescaler
 - Infrared remote control (IR)
 - Independent watchdog
 - Auto-wakeup unit
 - Beeper timer with 1, 2 or 4 kHz frequencies
 - SPI synchronous serial interface
 - Fast I2C Multimaster/slave 400 kHz
 - UART with fractional baud rate generator
 - 2 comparators with 1 input each
- Development support
 - Hardware single wire interface module (SWIM) for fast on-chip programming and non intrusive debugging

This is information on a product in full production.

1	Introd	duction
2	Descr	ription
3	Produ	act overview
	3.1	Central processing unit STM8
	3.2	Development tools
	3.3	Single wire data interface (SWIM) and debug module
	3.4	Interrupt controller
	3.5	Memory
	3.6	Low power modes
	3.7	Voltage regulators
	3.8	Clock control
	3.9	Independent watchdog
	3.10	Auto-wakeup counter
	3.11	General purpose and basic timers
	3.12	Beeper
	3.13	Infrared (IR) interface
	3.14	Comparators
	3.15	USART
	3.16	SPI
	3.17	I2C
4	Pin de	escription
5	Memo	ory and register map
6	Interr	upt vector mapping
7	Optio	n bytes
8	Electr	rical parameters
	8.1	Parameter conditions
		8.1.1 Minimum and maximum values
		8.1.2 Typical values
		8.1.3 Typical curves

DS12153 Rev 4

9

11	Revis	ion hist	ory
10	Order	ing info	rmation
	9.1	SO8N pa	ackage information
9	Packa	ige info	rmation
	8.4	Thermal	characteristics
		8.3.9	EMC characteristics
		8.3.8	Comparator characteristics
		8.3.7	Communication interfaces
		8.3.6	I/O port pin characteristics
		8.3.5	Memory characteristics
		8.3.4	Clock and timing characteristics
		8.3.3	Supply current characteristics
		8.3.2	Power-up / power-down operating conditions
		8.3.1	General operating conditions
	8.3	Operatin	ng conditions
	8.2	Absolute	e maximum ratings
		8.1.5	Pin input voltage
		8.1.4	Loading capacitor

List of tables

Table 1.	STM8L001J3 device feature summary	. 7
Table 2.	Legend/abbreviation for table 4	14
Table 3.	STM8L001J3 pin description	15
Table 4.	Flash and RAM boundary addresses	18
Table 5.	I/O Port hardware register map	18
Table 6.	General hardware register map	19
Table 7.	CPU/SWIM/debug module/interrupt controller registers	24
Table 8.	Interrupt mapping	26
Table 9.	Option bytes	28
Table 10.	Option byte description	28
Table 11.	Voltage characteristics	31
Table 12.	Current characteristics	32
Table 13.	Thermal characteristics.	32
Table 14.	General operating conditions	33
Table 15.	Operating conditions at power-up / power-down	34
Table 16.	Total current consumption in Run mode	
Table 17.	Total current consumption in Wait mode	36
Table 18.	Total current consumption and timing in Halt and Active-halt mode at	
	VDD = 1.8 V to 3.6 V	
Table 19.	Peripheral current consumption	
Table 20.	HSI oscillator characteristics	
Table 21.	LSI oscillator characteristics	
Table 22.	RAM and hardware registers	
Table 23.	Flash program memory	
Table 24.	I/O static characteristics	
Table 25.	Output driving current (High sink ports)	
Table 26.	Output driving current (true open drain ports).	
Table 27.	Output driving current (PA0 with high sink LED driver capability).	
Table 28.	SPI characteristics	
Table 29.	I2C characteristics	
Table 30.	Comparator characteristics	
Table 31.	EMS data	
Table 32.	EMI data	
Table 33.	ESD absolute maximum ratings	
Table 34.	Electrical sensitivities	
Table 35.	Thermal characteristics.	52
Table 36.	SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,	
	package mechanical data	
Table 37.	Ordering information scheme	
Table 38.	Document revision history	57

List of figures

Figure 1.	STM8L001J3 device block diagram	. 8
Figure 2.	STM8L001J3 SO8N pinout.	
Figure 3.	Memory map	
Figure 4.	Pin loading conditions	30
Figure 5.	Pin input voltage	
Figure 6.	IDD(RUN) vs. VDD, fCPU = 2 MHz	35
Figure 7.	IDD(RUN) vs. VDD, fCPU = 16 MHz	
Figure 8.	IDD(WAIT) vs. VDD, fCPU = 2 MHz	36
Figure 9.	IDD(WAIT) vs. VDD, fCPU = 16 MHz	
Figure 10.	Typ. IDD(Halt) vs. VDD, fCPU = 2 MHz and 16 MHz	
Figure 11.	Typical LSI RC frequency vs. VDD	
Figure 12.	Typical VIL and VIH vs. VDD (High sink I/Os)	
Figure 13.	Typical VIL and VIH vs. VDD (true open drain I/Os).	
Figure 14.	Typical pull-up resistance R _{PU} vs. V _{DD} with VIN=VSS	
Figure 15.	Typical pull-up current I _{PU} vs. V _{DD} with VIN=VSS	
Figure 16.	Typ. VOL at VDD = 3.0 V (High sink ports)	
Figure 17.	Typ. VOL at VDD = 1.8 V (High sink ports)	
Figure 18.	Typ. VOL at VDD = 3.0 V (true open drain ports)	
Figure 19.	Typ. VOL at VDD = 1.8 V (true open drain ports)	
Figure 20.	Typ. VDD - VOH at VDD = 3.0 V (High sink ports)	
Figure 21.	Typ. VDD - VOH at VDD = 1.8 V (High sink ports)	
Figure 22.	SPI timing diagram - slave mode and CPHA = 0	46
Figure 23.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	46
Figure 24.	SPI timing diagram - master mode ⁽¹⁾	
Figure 25.	Typical application with I2C bus and timing diagram (1)	
Figure 26.	SO8N - 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package outline .	53
Figure 27.	SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,	
	package recommended footprint	
Figure 28.	Example of SO8N marking (package top view)	55

1 Introduction

This datasheet provides the STM8L001J3 pinout, ordering information, mechanical and electrical device characteristics.

For complete information on the STM8L001J3 microcontroller memory, registers and peripherals, please refer to the *STM8L001xx*, *STM8L101xx microcontroller family* reference manual (RM0013).

The STM8L001J3 devices are members of the STM8L low-power 8-bit family. They are referred to as low-density devices in the *STM8L001xx*, *STM8L101xx microcontroller family* reference manual (RM0013) and in the *How to program STM8L and STM8AL Flash program memory and data EEPROM* programming manual (PM0054).

All devices of the SM8L Series provide the following benefits:

- Reduced system cost
 - 8 Kbytes of low-density embedded Flash program memory including up to 2 Kbytes of data EEPROM
 - High system integration level with internal clock oscillators and watchdogs.
 - Smaller battery and cheaper power supplies.
- Low power consumption and advanced features
 - Up to 16 MIPS at 16 MHz CPU clock frequency
 - Less than 150 μA/MHz, 0.8 μA in Active-halt mode, and 0.3 μA in Halt mode
 - Clock gated system and optimized power management
- Short development cycles
 - Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals.
 - Full documentation and a wide choice of development tools
- Product longevity
 - Advanced core and peripherals made in a state-of-the art technology
 - Product family operating from 1.8 V to 3.6 V supply.

2 Description

The STM8L001J3 low-power microcontroller features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultra fast Flash programming.

All STM8L001J3 microcontrollers feature low power low-voltage single-supply program Flash memory. The 8-Kbyte devices embed data EEPROM.

The STM8L001J3 low power microcontroller is based on a generic set of state-of-the-art peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

All STM8L low power products are based on the same architecture with the same memory mapping and a coherent pinout.

Features	STM8L001J3
Flash	8 Kbytes of Flash program memory including up to 2 Kbytes of Data EEPROM
RAM	1.5 Kbytes
Peripheral functions	Independent watchdog (IWDG), Auto-wakeup unit (AWU), Beep, Serial peripheral interface (SPI), Inter-integrated circuit (I2C), Universal synchronous / asynchronous receiver / transmitter (USART), 2 comparators, Infrared (IR) interface
Timers	Two 16-bit timers, one 8-bit timer
Operating voltage	1.8 to 3.6 V
Operating temperature	-40 to +125 °C
Packages	SO8N

Table 1. STM8L001J3 device feature summary

3 Product overview

Figure 1. STM8L001J3 device block diagram

Legend:

AWU: Auto-wakeup unit Int. RC: internal RC oscillator I2C: Inter-integrated circuit multimaster interface POR/PDR: Power on reset / power down reset SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous / asynchronous receiver / transmitter IWDG: Independent watchdog

3.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.

It features 21 internal registers, 20 addressing modes including indexed, indirect and relative addressing, and 80 instructions.

3.2 Development tools

Development tools for the STM8 microcontrollers include:

- The STVD high-level language debugger including C compiler, assembler and integrated development environment
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

3.3 Single wire data interface (SWIM) and debug module

The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.

The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

Recommendations for SWIM pin (pin#1)

As the NRST pin is not available on this device, if the SWIM pin should be used with the I/O pin functionality, it is recommended to add a ~5 seconds delay in the firmware before changing the functionality on the pin with SWIM functions. This action allows the user to set the device into SWIM mode after the device power on and to be able to reprogram the device. If the pin with SWIM functionality is set to I/O mode immediately after the device reset, the device is unable to connect through the SWIM interface and it gets locked forever. This initial delay can be removed in the final (locked) code.

If the initial delay is not acceptable for the application there is the option that the firmware reenables the SWIM pin functionality under specific conditions such as during firmware startup or during application run. Once that this procedure is done, the SWIM interface can be used for the device debug/programming.

3.4 Interrupt controller

The STM8L001J3 features a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 26 interrupt vectors with hardware priority
- Up to 6 external interrupt sources on 6 vectors
- Trap and reset interrupts.

3.5 Memory

The STM8L001J3 devices have the following main features:

- 1.5 Kbytes of RAM
- The EEPROM is divided into two memory arrays (see the *STM8L001xx*, *STM8L101xx* microcontroller family reference manual (RM0013) for details on the memory mapping):
 - 8 Kbytes of low-density embedded Flash program including up to 2 Kbytes of data EEPROM. Data EEPROM and Flash program areas can be write protected independently by using the memory access security mechanism (MASS).
 - 64 option bytes (one block) of which 5 bytes are already used for the device.

Error correction code is implemented on the EEPROM.

Recommendation for the device's programming:

The device's 8 Kbytes program memory is not empty on virgin devices; there is code loop implemented on the reset vector. It is recommended to keep valid code loop in the device to avoid the program execution from an invalid memory address (which would be any memory address out of 8 Kbytes program memory space).

If the device's program memory is empty (0x00 content), it displays the behavior described below:

After the power on, the "empty" code is executed (0x0000 opcodes = instructions: NEG (0x00, SP)) until the device reaches the end of the 8 Kbytes program memory (the end address = 0x9FFF).
 It takes around 4 milliseconds to reach the end of the 8 Kbytes memory space @2 MHz

It takes around 4 milliseconds to reach the end of the 8 Kbytes memory space @2 MHz HSI clock.

• Once the device reaches the end of the 8 Kbytes program memory, the program continues and code from a non-existing memory is fetched and executed.

The reading of non-existing memory is a random content which can lead to the execution of invalid instructions.

The execution of invalid instructions generates a software reset and the program starts again. A reset can be generated every 4 milliseconds or more.

Only the "connect on-the-fly" method can be used to program the device through the SWIM interface. The "connect under-reset" method cannot be used because the NRST pin is not available on this device.

The "connect on-the-fly" mode can be used while the device is executing code, but if there is a device reset (by software reset) during the SWIM connection, this connection is aborted and it must be performed again from the debug tool. Note that the software reset occurrence can be of every 4 milliseconds, making it difficult to successfully connect to the device's debug tool (there is practically only one successful connection trial for every 10 attempts). Once that a successful connection is reached, the device can be programmed with a valid firmware without problems; therefore it is recommended that device is never erased and that is contains always a valid code loop.

3.6 Low power modes

To minimize power consumption, the product features three low power modes:

- Wait mode: CPU clock stopped, selected peripherals at full clock speed.
- Active-halt mode: CPU and peripheral clocks are stopped. The programmable wakeup time is controlled by the AWU unit.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. Wakeup is triggered by an external interrupt.

3.7 Voltage regulators

The STM8L001J3 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes: main voltage regulator mode (MVR) and low power voltage regulator mode (LPVR). When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

3.8 Clock control

The STM8L001J3 embeds a robust clock controller. It is used to distribute the system clock to the core and the peripherals and to manage clock gating for low power modes. This system clock is a 16-MHz High Speed Internal RC oscillator (HSI RC), followed by a programmable prescaler.

In addition, a 38 kHz low speed internal RC oscillator is used by the independent watchdog (IWDG) and Auto-wakeup unit (AWU).

3.9 Independent watchdog

The independent watchdog (IWDG) peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 38 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure.

3.10 Auto-wakeup counter

The auto-wakeup (AWU) counter is used to wakeup the device from Active-halt mode.

3.11 General purpose and basic timers

STM8L001J3 devices contain two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

16-bit general purpose timers

The 16-bit timers consist of 16-bit up/down auto-reload counters driven by a programmable prescaler. They perform a wide range of functions, including:

- Time base generation
- Measuring the pulse lengths of input signals (input capture)
- Generating output waveforms (output compare, PWM and One pulse mode)
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.12 Beeper

The STM8L001J3 devices include a beeper function used to generate a beep signal in the range of 1, 2 or 4 kHz when the LSI clock is operating at a frequency of 38 kHz.

3.13 Infrared (IR) interface

The STM8L001J3 devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.14 Comparators

The STM8L001J3 features two zero-crossing comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference can be internal (comparison with ground) or external (comparison to a reference pin voltage).

Each comparator is connected to 4 channels, which can be used to generate interrupt, timer input capture or timer break. Their polarity can be inverted.

3.15 USART

The USART interface (USART) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

3.16 SPI

The serial peripheral interface (SPI) provides half/ full duplex synchronous serial communication with external devices. It can be configured as the master and in this case it provides the communication clock (SCK) to the external slave device. The interface can also operate in multi-master configuration.

DS12153 Rev 4

3.17 I2C

The inter-integrated circuit (I2C) bus interface is designed to serve as an interface between the microcontroller and the serial I2Cbus. It provides multi-master capability, and controls all I2C bus-specific sequencing, protocol, arbitration and timing. It manages standard and fast speed modes.

4 Pin description

Туре	I= input, O	I= input, O = output, S = power supply					
Level	Input	CM = CMOS					
Level	Output	HS = high sink/source (20 mA)					
Port and control	Input	float = floating, wpu = weak pull-up					
configuration	Output	T = true open drain, OD = open drain, PP = push pull					
Reset state	Unless othe	state after reset release). erwise specified, the pin state is the same during the reset phase (i.e. t") and after internal reset release (i.e. at reset state).					

Table 3	B. STM8L	_001J3 r	oin descr	iption
				iption .

Pin number				Input			Outpu				
SO8N	Pin name	Type	Floating	NPU	Ext. interrupt	High sink / source	QO	dd	Main function (after reset)	Alternate function	
	PA0 ⁽¹⁾ /SWIM/BEEP/ IR_TIM ⁽²⁾	I/O	х	X ⁽¹⁾	С	HS (2)	x	х	Port A0	SWIM input and output / Beep output/ Timer infrared output	
1	PC3/USART_TX	I/O	X ⁽¹⁾	Х	Х	HS	Х	Х	Port C3	USART transmit	
	PC4/USART_CK/ CCO	I/O	X ⁽¹⁾	х	х	HS	x	х	Port C4	USART synchronous clock / Configurable clock output	
	PA2	I/O	Х	Х	Х	HS	Х	Х	Port A2	-	
2	PA4/TIM2_BKIN	I/O	Х	х	Х	HS	х	х	Port A4	Timer 2 - break input	
	PA6/COMP_REF	I/O	х	х	Х	HS	х	х	Port A6	Comparator external reference	
3	V _{SS}	S	-	-	-	-	-	-	-	Ground	
4	V _{DD}	S	-	-	-	-	-	-	-	Power supply	
	PD0/TIM3_CH2/ COMP1_CH3	I/O	x	х	х	HS	х	х	Port D0	Timer 3 - Channel 2 / Comparator 1 - Channel 3	
5	PB3/TIM2_ETR/ COMP2_CH2	I/O	x	х	х	HS	х	х	Port B3	Timer 2 - trigger / Comparator 2 - Channel 2	
	PB5/SPI_SCK	I/O	Х	Х	Х	HS	Х	Х	Port B5	SPI clock	
6	PB6/SPI_MOSI	I/O	X	х	х	HS	х	х	Port B6	SPI master out / slave in	
7	PB7/SPI_MISO	I/O	х	х	Х	HS	х	х	Port B7	SPI master in / slave out	
	PC0/I2C_SDA	I/O	Х	-	Х	-	T ⁽³⁾	-	Port C0	I2C data	
8	PC1/I2C_SCL	I/O	Х	-	Х	-	T ⁽³⁾	-	Port C1	I2C clock	
0	PC2/USART_RX	I/O	Х	Х	Х	HS	Х	Х	Port C2	USART receive	

- 1. The PA0 pin is in input pull-up during the reset phase and after internal reset release. This PA0 default state influences all the GPIOs connected in parallel on pin number 1 (PC3, PC4).
- 2. High sink LED driver capability available on PA0.
- 3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented). Although PC0/PC1 itself is a true open drain GPIO with its respective internal circuitry and characteristics, V_{IN} maximum of the pin number 7 and pin number 8 is limited by the standard GPIO (PB7 or PC2) which is also bonded to the same pin number.

Slope control of all GPIO pins can be programmed except true open drain pins which by default is limited to 2 MHz.

- Note: The PA1, PA3, PA5, PB0, PB1, PB2, PB4, PC5, PC6, PD1, PD2, PD3, PD4, PD5, PD6 and PD7 GPIOs should be configured after device reset, by user software into the in output push-pull mode with output-low state to reduce device consumption and to improve EMC immunity. Those GPIOs are not connected to pins and after device reset are in input floating mode. To configure PA1 pin in output push-pull mode refer to Section "Configuring NRST/PA1 pin as general purpose output" in the STM8L001xx, STM8L101xx microcontroller family reference manual (RM0013).
- Note: As several pins provide a connection to multiple GPIOs, the mode selection for any of those GPIOs impacts all the other GPIOs connected to the same pin. The user is responsible for the proper setting of the GPIO modes in order to avoid conflicts between GPIOs bonded to the same pin (including their alternate functions). For example, pull-up enabled on PA0 is also seen on PC3 and PC4. Push-pull configuration of PA2 is also seen on PA4 and PA6, etc.

16/58

5 Memory and register map

Figure 3. Memory map

1. *Table 4* lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.

2. Refer to *Table 6* for an overview of hardware register mapping, to *Table 5* for details on I/O port hardware registers, and to *Table 7* for information on CPU/SWIM/debug module controller registers.

Table 4. Thash and NAM boundary addresses							
Memory area	Size	Start address	End address				
RAM	1.5 Kbytes	0x00 0000	0x00 05FF				
Flash program memory	8 Kbytes	0x00 8000	0x00 9FFF				

Table 4. Flash and RAM boundary addresses

Table 5. I/O Port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xxx
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xxx
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PC_IDR	Port C input pin value register	0xxx
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xxx
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x00
0x00 5013		PD_CR2	Port D control register 2	0x00

Table 6. General hardware register map								
Address	Block	Register label	Register label Register name					
0x00 5050		FLASH_CR1	Flash control register 1	0x00				
0x00 5051		FLASH_CR2	SH_CR2 Flash control register 2					
0x00 5052	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00				
0x00 5053		FLASH_DUKR	Data EEPROM unprotection register	0x00				
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0xX0				
0x00 5055 to 0x00 509F		Я	Reserved area (75 bytes)					
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00				
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00				
0x00 50A2	ITC-EXTI	EXTI_CR3	External interrupt control register 3	0x00				
0x00 50A3	IIC-EXII	EXTI_SR1	External interrupt status register 1	0x00				
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00				
0x00 50A5		EXTI_CONF	External interrupt port select register	0x00				
0x00 50A6	WFE	WFE_CR1	WFE control register 1	0x00				
0x00 50A7		WFE_CR2	WFE control register 2	0x00				
0x00 50A8 to 0x00 50AF		I	Reserved area (8 bytes)					
0x00 50B0	БОТ	RST_CR	Reset control register	0x00				
0x00 50B1	RST	RST_SR	Reset status register	0x01				
0x00 50B2 to 0x00 50BF		F	Reserved area (14 bytes)					
0x00 50C0		CLK_CKDIVR	Clock divider register	0x03				
0x00 50C1 to 0x00 50C2	CLK		Reserved area (2 bytes)					
0x00 50C3		CLK_PCKENR	Peripheral clock gating register	0x00				
0x00 50C4			Reserved (1 byte)					
0x00 50C5	1	CLK_CCOR	Configurable clock control register	0x00				
0x00 50C6 to 0x00 50DF		Reserved area (25 bytes)						

Table 6. General hardware register map

	Table 6. General hardware register map (continued)					
Address	Block	Register label	Reset status			
0x00 50E0		IWDG_KR	IWDG key register	0xXX		
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00		
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF		
0x00 50E3 to 0x00 50EF		F	Reserved area (13 bytes)			
0x00 50F0		AWU_CSR	AWU control/status register	0x00		
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F		
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00		
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F		
0x00 50F4 to 0x00 51FF		R	eserved area (268 bytes)			
0x00 5200		SPI_CR1	SPI control register 1	0x00		
0x00 5201		SPI_CR2	SPI control register 2	0x00		
0x00 5202	SPI	SPI_ICR	SPI interrupt control register	0x00		
0x00 5203		SPI_SR	SPI status register	0x02		
0x00 5204		SPI_DR SPI data register		0x00		
0x00 5205 to 0x00 520F		F	Reserved area (11 bytes)			
0x00 5210		I2C_CR1	I2C control register 1	0x00		
0x00 5211		I2C_CR2	I2C control register 2	0x00		
0x00 5212		I2C_FREQR	I2C frequency register	0x00		
0x00 5213		I2C_OARL	I2C own address register low	0x00		
0x00 5214		I2C_OARH	I2C own address register high	0x00		
0x00 5215			Reserved area (1 byte)			
0x00 5216	I2C	I2C_DR	I2C data register	0x00		
0x00 5217	120	I2C_SR1	I2C status register 1	0x00		
0x00 5218		I2C_SR2	I2C status register 2	0x00		
0x00 5219		I2C_SR3	I2C status register 3	0x00		
0x00 521A		I2C_ITR	I2C interrupt control register	0x00		
0x00 521B		I2C_CCRL	I2C Clock control register low	0x00		
0x00 521C		I2C_CCRH	I2C Clock control register high	0x00		
0x00 521D		I2C_TRISER	I2C TRISE register	0x02		

 Table 6. General hardware register map (continued)

DS12153 Rev 4

Address	Block	Block Register label Register name				
0x00 521E to 0x00 522F		R	eserved area (18 bytes)			
0x00 5230		USART_SR	USART status register	0xC0		
0x00 5231		USART_DR	USART data register	0xXX		
0x00 5232		USART_BRR1	USART baud rate register 1	0x00		
0x00 5233	USART	USART_BRR2	USART baud rate register 2	0x00		
0x00 5234	USARI	USART_CR1	USART control register 1	0x00		
0x00 5235		USART_CR2	USART control register 2	0x00		
0x00 5236		USART_CR3	USART control register 3	0x00		
0x00 5237		USART_CR4	USART control register 4	0x00		
0x00 5238 to 0x00 524F	Reserved area (18 bytes)					

 Table 6. General hardware register map (continued)

Table 6. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status	
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00	
0x00 5251		TIM2_CR2	TIM2 control register 2	0x00	
0x00 5252		TIM2_SMCR	TIM2 slave mode control register	0x00	
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00	
0x00 5254		TIM2_IER	TIM2 interrupt enable register	0x00	
0x00 5255		TIM2_SR1	TIM2 status register 1	0x00	
0x00 5256		TIM2_SR2	TIM2 status register 2	0x00	
0x00 5257		TIM2_EGR	TIM2 event generation register	0x00	
0x00 5258		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00	
0x00 5259		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00	
0x00 525A	TIM2	TIM2_CCER1	TIM2 capture/compare enable register 1	0x00	
0x00 525B	TIMZ	TIM2_CNTRH	TIM2 counter high	0x00	
0x00 525C		TIM2_CNTRL	TIM2 counter low	0x00	
0x00 525D		TIM2_PSCR	TIM2 prescaler register	0x00	
0x00 525E		TIM2_ARRH	TIM2 auto-reload register high	0xFF	
0x00 525F		TIM2_ARRL	TIM2 auto-reload register low	0xFF	
0x00 5260		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00	
0x00 5261		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00	
0x00 5262		TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00	
0x00 5263		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00	
0x00 5264		TIM2_BKR	TIM2 break register	0x00	
0x00 5265		TIM2_OISR	TIM2 output idle state register	0x00	
0x00 5266 to 0x00 527F	Reserved area (26 bytes)				

 Table 6. General hardware register map (continued)

	Table 6. General hardware register map (continued)						
Address	Block	Register label	Register label Register name				
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00			
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00			
0x00 5282		TIM3_SMCR	TIM3 slave mode control register	0x00			
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00			
0x00 5284		TIM3_IER	TIM3 interrupt enable register	0x00			
0x00 5285		TIM3_SR1	TIM3 status register 1	0x00			
0x00 5286		TIM3_SR2	TIM3 status register 2	0x00			
0x00 5287		TIM3_EGR	TIM3 event generation register	0x00			
0x00 5288		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00			
0x00 5289		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00			
0x00 528A	TIMO	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00			
0x00 528B	TIM3	TIM3_CNTRH	TIM3 counter high	0x00			
0x00 528C		TIM3_CNTRL	TIM3 counter low	0x00			
0x00 528D		TIM3_PSCR	TIM3 prescaler register	0x00			
0x00 528E		TIM3_ARRH	TIM3 auto-reload register high	0xFF			
0x00 528F		TIM3_ARRL	TIM3 auto-reload register low	0xFF			
0x00 5290		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00			
0x00 5291		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00			
0x00 5292		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00			
0x00 5293		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00			
0x00 5294		TIM3_BKR	TIM3 break register	0x00			
0x00 5295		TIM3_OISR	TIM3 output idle state register	0x00			
0x00 5296 to 0x00 52DF		F	Reserved area (74 bytes)				
0x00 52E0		TIM4_CR1	TIM4 control register 1	0x00			
0x00 52E1		TIM4_CR2	TIM4 control register 2	0x00			
0x00 52E2		TIM4_SMCR	TIM4 Slave mode control register	0x00			
0x00 52E3		TIM4_IER	TIM4 interrupt enable register	0x00			
0x00 52E4	TIM4	TIM4_SR1	TIM4 Status register 1	0x00			
0x00 52E5		TIM4_EGR	TIM4 event generation register	0x00			
0x00 52E6		TIM4_CNTR	TIM4 counter	0x00			
0x00 52E7		TIM4_PSCR	TIM4 prescaler register	0x00			
0x00 52E8		TIM4_ARR	TIM4 auto-reload register low	0xFF			

 Table 6. General hardware register map (continued)

Address	Block	Register label	Register label Register name		
0x00 52E9 to 0x00 52FE		Reserved area (23 bytes)			
0x00 52FF	IRTIM	IR_CR	Infra-red control register		
0x00 5300		COMP_CR	Comparator control register	0x00	
0x00 5301	COMP	COMP_CSR	Comparator status register	0x00	
0x00 5302		COMP_CCS	Comparator channel selection register	0x00	

 Table 6. General hardware register map (continued)

Table 7. CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label Register name		Reset status	
0x00 7F00		A	Accumulator	0x00	
0x00 7F01		PCE	Program counter extended	0x00	
0x00 7F02		PCH	Program counter high	0x80	
0x00 7F03		PCL	Program counter low	0x00	
0x00 7F04		ХН	X index register high	0x00	
0x00 7F05	CPU	XL	X index register low	0x00	
0x00 7F06		YH	Y index register high	0x00	
0x00 7F07		YL	Y index register low	0x00	
0x00 7F08		SPH	Stack pointer high	0x05	
0x00 7F09		SPL	Stack pointer low	0xFF	
0x00 7F0A		CC	Condition code register	0x28	
0x00 7F0B to 0x00 7F5F	Reserved area (85 bytes)				
0x00 7F60	CFG	CFG_GCR	Global configuration register	0x00	
0x00 7F61 0x00 7F6F		Res	served area (15 bytes)		
0x00 7F70		ITC_SPR1	Interrupt Software priority register 1	0xFF	
0x00 7F71		ITC_SPR2	Interrupt Software priority register 2	0xFF	
0x00 7F72		ITC_SPR3	Interrupt Software priority register 3	0xFF	
0x00 7F73	ITC-SPR	ITC_SPR4	Interrupt Software priority register 4	0xFF	
0x00 7F74	(1)	ITC_SPR5	Interrupt Software priority register 5	0xFF	
0x00 7F75		ITC_SPR6	Interrupt Software priority register 6	0xFF	
0x00 7F76		ITC_SPR7	Interrupt Software priority register 7	0xFF	
0x00 7F77		ITC_SPR8	Interrupt Software priority register 8	0xFF	

Table 7. CF0/SWIM/debug module/interrupt controller registers (continued)							
Address	Block	Register label Register name					
0x00 7F78 to 0x00 7F79		Reserved area (2 bytes)					
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00			
0x00 7F81 to 0x00 7F8F		Reserved area (15 bytes)					
0x00 7F90		DM_BK1RE	Breakpoint 1 register extended byte	0xFF			
0x00 7F91		DM_BK1RH	Breakpoint 1 register high byte	0xFF			
0x00 7F92		DM_BK1RL	Breakpoint 1 register low byte	0xFF			
0x00 7F93		DM_BK2RE	Breakpoint 2 register extended byte	0xFF			
0x00 7F94		DM_BK2RH	Breakpoint 2 register high byte	0xFF			
0x00 7F95	DM	DM_BK2RL	Breakpoint 2 register low byte	0xFF			
0x00 7F96		DM_CR1	Debug module control register 1	0x00			
0x00 7F97		DM_CR2	Debug module control register 2	0x00			
0x00 7F98		DM_CSR1	Debug module control/status register 1	0x10			
0x00 7F99		DM_CSR2	Debug module control/status register 2	0x00			
0x00 7F9A		DM_ENFCTR	Enable function register	0xFF			

Table 7. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Refer to *Table 6: General hardware register map on page 19* (addresses 0x00 50A0 to 0x00 50A5) for a list of external interrupt registers.

6 Interrupt vector mapping

	Table 8. Interrupt mapping						
IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode)	Vector address
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	-	-	0x00 8004
0	-	Reserved	-	-	-	-	0x00 8008
1	FLASH	EOP/WR_PG_DIS	-	-	Yes	Yes ⁽¹⁾	0x00 800C
2-3	-	Reserved	-	-	-	-	0x00 8010 -0x00 8017
4	AWU	Auto wakeup from Halt	-	Yes	Yes	Yes ⁽¹⁾	0x00 8018
5	-	Reserved	-	-	-	-	0x00 801C
6	EXTIB	External interrupt port B	Yes	Yes	Yes	Yes	0x00 8020
7	EXTID	External interrupt port D	Yes	Yes	Yes	Yes	0x00 8024
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes	0x00 8028
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes	0x00 802C
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes	0x00 8030
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes	0x00 8034
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes	0x00 8038
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes	0x00 803C
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes	0x00 8040
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes	0x00 8044
16	-	Reserved	-	-	-	-	0x00 8048
17	-	Reserved	-	-	-	-	0x00 804C -0x00 804F
18	COMP	Comparators	-	-	Yes	Yes ⁽¹⁾	0x00 8050
19	TIM2	Update /Overflow/Trigger/Break	-	-	Yes	Yes	0x00 8054
20	TIM2	Capture/Compare	-	-	Yes	Yes	0x00 8058
21	TIM3	Update /Overflow/Break	-	-	Yes	Yes ⁽¹⁾	0x00 805C
22	TIM3	Capture/Compare	-	-	Yes	Yes ⁽¹⁾	0x00 8060
23- 24	-	Reserved	-	-	-	-	0x00 8064- 0x00 806B
25	TIM4	Update /Trigger	-	-	Yes	Yes ⁽¹⁾	0x00 806C
26	SPI	End of Transfer	Yes	Yes	Yes	Yes ⁽¹⁾	0x00 8070

Table 8. Interrupt mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode)	Vector address
27	USART	Transmission complete/transmit data register empty	-	-	Yes	Yes ⁽¹⁾	0x00 8074
28	USART	Receive Register DATA FULL/overrun/idle line detected/parity error	-	-	Yes	Yes ⁽¹⁾	0x00 8078
29	I2C	I2C interrupt ⁽²⁾	Yes	Yes	Yes	Yes ⁽¹⁾	0x00 807C

Table 8. Interrupt mapping (continued)

1. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. Refer to Section *Wait for event (WFE) mode* in the *STM8L001xx, STM8L101xx microcontroller family* reference manual (RM0013).

2. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated row of the memory.

All option bytes can be modified only in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 9* for details on option byte addresses.

Refer to the *How to program STM8L and STM8AL Flash program memory and data EEPROM* programming manual (PM0054) and the *STM8 SWIM communication protocol and debug module* user manual (UM0470) for information on SWIM programming procedures.

Addr.	Ontion name	Option byte	•								Factory default
Auur.	dr. Option name		7	6	5	4	3	2	1	0	setting
0x4800	Read-out protection (ROP)	OPT1		ROP[7:0]				0x00			
0x4807	-	-		Reserved				0x00			
0x4802	UBC (User Boot code size)	OPT2		UBC[7:0]				0x00			
0x4803	DATASIZE	OPT3		DATASIZE[7:0]				0x00			
0x4808	Independent watchdog option	OPT4 [1:0]		Reserved IWDG IWDG _HALT _HW				0x00			

Table 9. Option bytes

Table 10. Option byte description

OPT1	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Refer to <i>Read-out protection</i> section in the <i>STM8L001xx, STM8L101xx</i> <i>microcontroller family</i> reference manual (RM0013) for details.
OPT2	 UBC[7:0] Size of the user boot code area 0x00: no UBC 0x01-0x02: UBC contains only the interrupt vectors. 0x03: Page 0 and 1 reserved for the interrupt vectors. Page 2 is available to store user boot code. Memory is write protected 0x7F - Page 0 to 126 reserved for UBC, memory is write protected Refer to User boot area (UBC) section in the STM8L001xx, STM8L101xx microcontroller family reference manual (RM0013) for more details. UBC[7] is forced to 0 internally by HW.

	Table 10. Option byte description (continued)
	DATASIZE[7:0] Size of the data EEPROM area
	0x00: no data EEPROM area
	0x01: 1 page reserved for data storage from 0x9FC0 to 0x9FFF
	0x02: 2 pages reserved for data storage from 0x9F80 to 0x9FFF
OPT3	
	0x20: 32 pages reserved for data storage from 0x9800 to 0x9FFF
	Refer to Data EEPROM (DATA) section in the STM8L001xx, STM8L101xx
	microcontroller family reference manual (RM0013) for more details.
	DATASIZE[7:6] are forced to 0 internal by HW.
	IWDG_HW: Independent watchdog
	0: Independent watchdog activated by software
OPT4	1: Independent watchdog activated by hardware
0214	IWDG_HALT: Independent window watchdog reset on Halt/Active-halt
	0: Independent watchdog continues running in Halt/Active-halt mode
	1: Independent watchdog stopped in Halt/Active-halt mode

Table 10. Option byte description (continued)

Caution: After a device reset, read access to the program memory is not guaranteed if address 0x4807 is not programmed to 0x00.

8 Electrical parameters

8.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

8.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

8.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3$ V. They are given only as design guidelines and are not tested.

8.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

8.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 4*.

Figure 4. Pin loading conditions

8.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 5.

Figure 5. Pin input voltage

8.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics* and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile is compliant with the JEDEC JESD47 qualification standard; extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit	
V _{DD} - V _{SS}	External supply voltage	-0.3 4.0		V	
V _{IN}	Input voltage on any pin ⁽¹⁾	V _{SS} -0.3	V _{DD} +0.3	V	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 51		-	

Table 11. Voltage characteristics

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
I _{IO}	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	_
	Output current sunk by any other I/O and control pin	25	mA
	Output current sourced by any I/Os and control pin	-25	
I _{INJ(PIN)}	N) Injected current on any pin ⁽¹⁾		
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽²⁾	±25	

Table 12. Current characteristics

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}.

When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 13. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	
TJ	Maximum junction temperature	150	0

8.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

8.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit		
f _{MASTER} ⁽¹⁾	Master clock frequency	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.6 \text{ V}$	0	16	MHz		
V_{DD}	Standard operating voltage	-	1.8	3.6	V		
$P_D^{(2)}$	Power dissipation at T _A = 125 °C for suffix 3 devices	SO8N	-	49	mW		
T _A	Temperature range	$1.8 V \le V_{DD} < 3.6 V$ (3 suffix version)	- 40	125	°C		
TJ	Junction temperature range	$\begin{array}{l} -40 \ ^{\circ}\text{C} \leq \ \text{T}_{\text{A}} \leq \ 125 \ ^{\circ}\text{C} \\ (3 \ \text{suffix version}) \end{array}$	- 40	130	°C		

Table 14. General operating conditions

1. f_{MASTER} = f_{CPU}

2. To calculate $P_{Dmax}(T_A)$ use the formula given in thermal characteristics $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in table "Thermal characteristics"

8.3.2 Power-up / power-down operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
t _{VDD}	V _{DD} rise time rate	-	20	-	1300	µs/V	
t _{TEMP}	Reset release delay	V _{DD} rising	-	1	-	ms	
V _{POR} ⁽¹⁾⁽²⁾	Power on reset threshold	-	1.35	-	1.65 ⁽³⁾	V	
V _{PDR} ⁽¹⁾⁽²⁾	Power down reset threshold	-	1.40	-	1.60	V	

Table 15. Operating conditions at power-up / power-down

1. Guaranteed by characterization results.

2. Correct device reset during power on sequence is guaranteed when $t_{VDD[max]}$ is respected. External reset circuit is recommended to ensure correct device reset during power down, when $V_{PDR} < V_{DD} < V_{DD[min]}$.

3. Tested in production.

8.3.3 Supply current characteristics

Total current consumption

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions ⁽²⁾		Тур	Max ⁽³⁾	Unit
I _{DD} (Run)	Supply current in Run mode ^{(4) (5)}		f _{MASTER} = 2 MHz	0.39	0.60	
			f _{MASTER} = 4 MHz	0.55	0.70	
			f _{MASTER} = 8 MHz	0.90	1.20	
			f _{MASTER} = 16 MHz	1.60	2.10 ⁽⁶⁾	mA
			f _{MASTER} = 2 MHz	0.55	0.70	
			f _{MASTER} = 4 MHz	0.88	1.80	
		Flash	f _{MASTER} = 8 MHz	1.50	2.50	
			f _{MASTER} = 16 MHz	2.70	3.50	

 Table 16. Total current consumption in Run mode ⁽¹⁾

1. Based on characterization results, unless otherwise specified.

- 2. All peripherals off, V_{DD} from 1.8 V to 3.6 V, HSI internal RC osc., $f_{\text{CPU}}\text{=}f_{\text{MASTER}}$
- 3. Maximum values are given for T_A = $-\,40$ to 125 $^\circ C.$
- 4. CPU executing typical data processing.
- 5. An approximate value of I_{DD(Run)} can be given by the following formula: I_{DD(Run)} = f_{MASTER} x 150 μ A/MHz +215 μ A.
- 6. Tested in production.

1. Typical current consumption measured with code executed from Flash.

Symbol	Parameter	Conditions		Тур	Max ⁽²⁾	Unit
^{DD} (Wait) C	current in all peripher	CPU not clocked,	f _{MASTER} = 2 MHz	245	400	μA
			f _{MASTER} = 4 MHz	300	450	
		HSI internal RC osc.	f _{MASTER} = 8 MHz	380	600	μΛ
			f _{MASTER} = 16 MHz	510	800	

Table 17. Total current consumption in Wait $mode^{(1)}$

1. Based on characterization results, unless otherwise specified.

2. Maximum values are given for T_A = -40 to 125 °C.

1. Typical current consumption measured with code executed from Flash.

Ĺγ/
Symbol	Parameter	Conditions		Тур	Max	Unit
			T_A = -40 °C to 25 °C	0.8	2	μΑ
			T _A = 55 °C	1	2.5	μA
I _{DD(AH)}	Supply current in Active-halt mode	LSI RC osc. (at 37 kHz)	T _A = 85 °C	1.4	3.2	μA
		()	T _A = 105 °C	2.9	7.5	μA
			T _A = 125 °C	5.8	13	μA
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode	-	-	2	-	mA
t _{WU(AH)} ⁽³⁾	Wakeup time from Active- halt mode to Run mode	f _{CPU} = 16 MHz		4	6.5	μs
		$T_A = -40 \ ^\circ C \ tc$	o 25 °C	0.35	1.2 ⁽⁴⁾	μΑ
		T _A = 55 °C		0.6	1.8	μA
I _{DD(Halt)}	Supply current in Halt mode	T _A = 85 °C		1	2.5 ⁽⁴⁾	μΑ
		T _A = 105 °C		2.5	6.5	μΑ
		T _A = 125 °C		5.4	12 ⁽⁴⁾	μA
I _{DD(WUFH)}	Supply current during wakeup time from Halt mode	2		2	-	mA
t _{WU(Halt)} ⁽³⁾	Wakeup time from Halt mode to Run mode	f _{CPU} = 16 MHz		4	6.5	μs

Table 18. Total current consumption and timing in Halt and Active-halt mode at
$V_{DD} = 1.8 V \text{ to } 3.6 V^{(1)(2)}$

1. T_A = -40 to 125 °C, no floating I/O, unless otherwise specified.

2. Guaranteed by characterization results.

3. Measured from interrupt event to interrupt vector fetch. To get t_{WU} for another CPU frequency use t_{WU}(FREQ) = t_{WU}(16 MHz) + 1.5 (T_{FREQ}-T_{16 MHz}). The first word of interrupt routine is fetched 5 CPU cycles after t_{WU}.

4. Tested in production.

Figure 10. Typ. $I_{DD(Halt)}$ vs. V_{DD} , f_{CPU} = 2 MHz and 16 MHz

1. Typical current consumption measured with code executed from Flash.

Current consumption of on-chip peripherals

Measurement made for f_{MASTER} = from 2 MHz to 16 MHz

Symbol	Parameter	Typ. V _{DD} = 3.0 V	Unit
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	9	
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾	9	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾	4	
I _{DD(USART)}	USART supply current ⁽²⁾	7	µA/MHz
I _{DD(SPI)}	SPI supply current ⁽²⁾	4	
I _{DD(I2C1)}	I2C supply current ⁽²⁾	4	
I _{DD(COMP)}	Comparator supply current ⁽²⁾	20	μA

 Data based on a differential I_{DD} measurement between all peripherals off and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pin toggling. not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pin toggling. Not tested in production.

8.3.4 Clock and timing characteristics

Internal clock sources

Subject to general operating conditions for V_{DD} and T_A .

High speed internal RC oscillator (HSI)

Table 20. HSI oscillato	r characteristics ⁽¹⁾
-------------------------	----------------------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
ACC _{HSI}	Accuracy of HSI	V _{DD} = 3.0 V, T _A = 25 °C	-5	-	5	%
, loohsi	oscillator (factory calibrated)	$1.8 \text{ V} \le \text{ V}_{DD} \le 3.6 \text{ V},$ -40 °C $\le \text{ T}_{A} \le 125 \text{ °C}$	-7.5 ⁽²⁾	-	7.5 ⁽²⁾	%
I _{DD(HSI)}	HSI oscillator power consumption	-	-	70	100 ⁽²⁾	μΑ

1. V_{DD} = 3.0 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by characterization results.

Low speed internal RC oscillator (LSI)

Table 21. LS	oscillator	characteristics	(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	26	38	56	kHz
f _{drift(LSI)}	LSI oscillator frequency drift ⁽²⁾	$0 \ ^{\circ}C \le T_{A} \le 85 \ ^{\circ}C$	-12	-	11	%

1. V_{DD} = 1.8 V to 3.6 V, T_A = -40 to 125 °C unless otherwise specified.

2. For each individual part, this value is the frequency drift from the initial measured frequency.

Figure 11. Typical LSI RC frequency vs. V_{DD}

8.3.5 Memory characteristics

 T_A = -40 to 125 °C unless otherwise specified.

Table 22. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or Reset)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results.

Flash memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit
V _{DD}	Operating voltage (all modes, read/write/erase)	f _{MASTER} = 16 MHz	1.8	-	3.6	V
+	Programming time for 1- or 64-byte (block) erase/write cycles (on programmed byte)	-	-	6	-	ms
Lprog	Programming time for 1- to 64-byte (block) write cycles (on erased byte)	-	-	3	-	ms

Table 23. Flash program memory

Symbol	Parameter	Conditions	Min	Тур	Max (1)	Unit
1	Programming/ erasing consumption	T _A =+25 °C, V _{DD} = 3.0 V	-	0.7	-	mA
Iprog		T _A =+25 °C, V _{DD} = 1.8 V	-	0.7	-	
	Data retention (program memory) after 10k erase/write cycles at $T_A = +85$ °C	T _{RET} = 55 °C	20 ⁽¹⁾	-	-	
t _{RET}	Data retention (data memory) after 10k erase/write cycles at $T_A = +85$ °C	T _{RET} = 55 °C	20 ⁽¹⁾	-	-	years
	Data retention (data memory) after 300k erase/write cycles at $T_A = +125$ °C	T _{RET} = 85 °C	1 ⁽¹⁾	-	-	
N	Erase/write cycles (program memory)	See notes ⁽¹⁾⁽²⁾	100 ⁽¹⁾	-	-	cycles
N _{RW}	Erase/write cycles (data memory)	See notes ⁽¹⁾⁽³⁾	100 ⁽¹⁾⁽⁴⁾	-	-	kcycles

Table 23.	Flash	program memory	(continued)

1. Guaranteed by characterization results.

2. Retention guaranteed after cycling is 10 years at 55 $^\circ\text{C}.$

3. Retention guaranteed after cycling is 1 year at 55 °C.

4. Data based on characterization performed on the whole data memory (2 Kbytes).

8.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage ⁽²⁾	All I/Os	V _{SS} -0.3	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage ⁽²⁾	All I/Os	0.70 x V _{DD}	-	V _{DD} +0.3	V
V	Schmitt trigger voltage hysteresis ⁽³⁾	Standard I/Os	-	200	-	- mV
V _{hys}		True open drain I/Os	-	250	-	1110
l _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤ V _{IN} ≤ V _{DD} Standard I/Os	-	-	50 ⁽⁵⁾	
		$V_{SS} \le V_{IN} \le V_{DD}$ True open drain I/Os	-	-	200 ⁽⁵⁾	nA
		$V_{SS} \le V_{IN} \le V_{DD}$ PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
C _{IO} ⁽⁷⁾	I/O pin capacitance	-	-	5 ⁽⁸⁾	-	pF

1)))		
	1	1)	1)	1)

- 1. V_{DD} = 3.0 V, T_A = -40 to 85 °C unless otherwise specified.
- 2. Guaranteed by characterization results.
- 3. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
- 4. The max. value may be exceeded if negative current is injected on adjacent pins.
- 5. Not tested in production.
- R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 14).
- 7. Guaranteed by design.
- Capacitance per one GPIO on pin. Complete pin capacitance depends on how many GPIOs are connected on a given pin (see *Table 3*). Total pin capacitance is then N x C_{IO} (where N = number of GPIOs on a given pin).

Figure 12. Typical V_{IL} and V_{IH} vs. V_{DD} (High sink I/Os)

Figure 13. Typical V_{IL} and V_{IH} vs. V_{DD} (true open drain I/Os)

Figure 14. Typical pull-up resistance R_{PU} vs. V_{DD} with $V_{IN}\text{=}V_{SS}$

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
Standard		Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	۷
	V _{OL} ⁽¹⁾		I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	1.2	V
	V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	V
			I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -1.2	-	V

Table 25.	Output	driving	current	(High	sink ports)
-----------	--------	---------	---------	-------	-------------

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IQ} current sourced must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IQ} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain) ((1) Output low lovel without for on 1/O nim	Output low level voltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
O Deu q O O	VOL V	⁽¹⁾ Output low level voltage for an I/O pin	I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V

Table 26. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
R	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.9	V

Table 27. Output driving current (PA0 with high sink LED driver capability)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

8.3.7 Communication interfaces

Serial peripheral interface (SPI)

Unless otherwise specified, the parameters given in *Table 28* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions summarized in *Section 8.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SDI clock froguency	Master mode	0	8	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	8	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x T _{MASTER}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} (2) t _{w(SCKL)} (2)	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	
t _{su(MI)} (2) t _{su(SI)} (2)	Data input setup time	Master mode	30	-	
t _{su(SI)} ⁽²⁾		Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	20
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x T _{MASTER}	
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-	
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾		Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	1	-	

1. Parameters are given by selecting 10-MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Inter IC control interface (I2C)

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter		rd mode :C	Fast mo	Unit		
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 (3)	-	0 (4)	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 29.	I2C	characteristics
-----------	-----	-----------------

1. f_{SCK} must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time of the START condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL).

Note:

For speeds around 200 kHz, achieved speed can have \pm 5% tolerance For other speed ranges, achieved speed can have \pm 2% tolerance The above variations depend on the accuracy of the external components used.

Figure 25. Typical application with I2C bus and timing diagram⁽¹⁾

1. Measurement points are done at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

8.3.8 **Comparator characteristics**

Table 30. Comparator characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{IN(COMP_REF)}	Comparator external reference	-	-0.1	-	V _{DD} -1.25	V
V _{IN}	Comparator input voltage range	-	-0.25	-	V _{DD} +0.25	V
V _{offset} ⁽²⁾	Comparator offset error	-	-	-	± 20	mV
t _{START}	Startup time (after BIAS_EN)	-	-	-	3 ⁽¹⁾	μs
	Analog comparator consumption	-	-	-	25 ⁽¹⁾	μA
I _{DD(COMP)}	Analog comparator consumption during power-down	-	-	-	60 ⁽¹⁾	nA
t _{propag} ⁽²⁾	Comparator propagation delay	100-mV input step with 5-mV overdrive, input rise time = 1 ns	-	-	2 ⁽¹⁾	μs

1. Guaranteed by design.

2. The comparator accuracy depends on the environment. In particular, the following cases may reduce the accuracy of the comparator and must be avoided:

- Negative injection current on the I/Os close to the comparator inputs

Switching on I/Os close to the comparator inputs
Switching with a high dV/dt on not used comparator input.
Switching with a high dV/dt on not used comparator input.

8.3.9 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials:

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. Refer to application note *Software techniques for improving microcontrollers EMC performance* (AN1015).

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	SO8N, V _{DD} = 3.3 V	TBD
	Fast transient voltage burst limits to be	SO8N, $V_{DD} = 3.3$ V, f_{HSI}	TBD
	applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	SO8N, V _{DD} = 3.3 V, f _{HSI} /2	TBD

Table 31. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbol	Parameter	Conditions	Monitored	Max vs.	Unit	
	Farameter	Conditions	frequency band	16 MHz	Unit dBμV	
S _{EMI} Peak leve		V _{DD} = 3.6 V,	0.1 MHz to 30 MHz	TBD		
	Deals lavel	V _{DD} = 3.6 V, T _A = +25 °C, SO8N	30 MHz to 130 MHz	TBD	dBµV	
	Peak level	conforming to	130 MHz to 1 GHz	TBD		
		IEC61967-2	SAE EMI Level	TBD	-	

Table	32.	EMI	data	(1)
-------	-----	-----	------	-----

1. Not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin).

This test conforms to the JESD22-A114A/A115A standard.

Table 33. ESD absolute	maximum ratings
------------------------	-----------------

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T = +25 °C	TBD	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A =+25 °C	TBD	v

1. Guaranteed by characterization results.

Static latch-up

• LU: 2 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table	34	Electrical	sensitivities
Table	UT .	LICCUICAI	Scholing

Symbol	Parameter	Class
LU	Static latch-up class	TBD

8.4 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 14: General operating conditions on page 33*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $\mathsf{T}_{\mathsf{Jmax}} = \mathsf{T}_{\mathsf{Amax}} + (\mathsf{P}_{\mathsf{Dmax}} \times \Theta_{\mathsf{JA}})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in °C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \left(\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}} \right) + \Sigma \left(\left(\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}} \right) * \mathsf{I}_{\mathsf{OH}} \right),$

taking into account the actual $V_{OL}/I_{OL and} V_{OH}/I_{OH}$ of the I/Os at low and high level in the application.

Table 35. Thermal characteri	stics ⁽¹⁾
------------------------------	----------------------

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient SO8N	102	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Failure analysis and guarantee

The small number of pins available induces limitations on failure analysis depth in case of isolated symptom, typically with an impact lower than 0.1%. Please contact your sales office for additional information for any failure analysis. STMicroelectronics will make a feasibility study for investigation based on failure rate and symptom description prior to responsibility endorsement.

9.1 SO8N package information

1. Drawing is not to scale.

Table 36. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.750	-	-	0.0689
A1	0.100	-	0.250	0.0039	-	0.0098
A2	1.250	-	-	0.0492	-	-
b	0.280	-	0.480	0.0110	-	0.0189
С	0.170	-	0.230	0.0067	-	0.0091

Querra la cal		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
D	4.800	4.900	5.000	0.1890	0.1929	0.1969
Е	5.800	6.000	6.200	0.2283	0.2362	0.2441
E1	3.800	3.900	4.000	0.1496	0.1535	0.1575
е	-	1.270	-	-	0.0500	-
h	0.250	-	0.500	0.0098	-	0.0197
k	0°	-	8°	0°	-	8°
L	0.400	-	1.270	0.0157	-	0.0500
L1	-	1.040	-	-	0.0409	-
ccc	-	-	0.100	-	-	0.0039

Table 36. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to four decimal digits.

1. Dimensions are expressed in millimeters.

2. Drawing is not to scale.

Device marking for SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 28. Example of SO8N marking (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

10 Ordering information

Table 37. Orderin	g informatio	on sch	eme				
Example:	STM8	L	001	J	3	М	3
Device family							
STM8 microcontroller							
Family type							
L = Low power							
Sub family type							
00x = Value line sub-family							
001 = Low density							
Pin count							
J = 8 pins							
Program memory size							
3 = 8 Kbytes							
Package							
M = SO8N							
Temperature range							

3 = -40°C to 125°C

 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you.

11 Revision history

Date	Revision	Changes
06-Jun-2017	1	Initial release.
04-Oct-2017	2	Updated: – Document's confidentiality level to <i>public</i> – Section 1: Introduction – Section 2: Description – Section 9: Package information – Figure 23: SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾ – Figure 24: SPI timing diagram - master mode ⁽¹⁾ – Figure 25: Typical application with I2C bus and timing diagram (1)
04-Jul-2018	3	Updated: – Recommendations for SWIM pin (pin#1) on Section 3.3: Single wire data interface (SWIM) and debug module
10-Sep-2020	4	Deleted: – Figure: Typical HSI frequency vs. VDD – Figure: Typical HSI accuracy vs. temperature, VDD = 3 V – Figure: Typical HSI accuracy vs. temperature, VDD = 1.8 V to 3.6 V Updated: – <i>Table 20: HSI oscillator characteristics</i>

Table 38. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

DS12153 Rev 4

